
 7

Hash-Based Authentication Code Algorithm for Quick Response
(QR) Code as Digital Signature

*Nur Khairiyah1, Yeka Hendriyani1, Ahmaddul Hadi1, Lativa Mursyida1

1 Department,of Electronics Engineering, Padang, Indonesia
*Corresponding Author: nkhairiyah018@gmail.com

Abstract - The authenticity and integrity of digital documents are crucial in modern data exchange. To ensure these qualities,
cryptographic methods like digital signatures are employed. This research aims to develop a document authentication system using
the hash-based authentication code algorithm, combined with QR codes and digital signatures. The system is designed to verify the
authenticity of internship certificates issued by PT. ARG Solusi Technology. The digital signature process involves generating a
message digest using the Secure Hash Algorithm-256 (SHA-256) and encrypting it with the Hash-Based Authentication Code
(HMAC) algorithm. This digest is then embedded in a QR code. The system is developed using the waterfall methodology, which
includes requirements analysis, system design, implementation, testing, deployment, and maintenance phases. It is implemented as a
web service using RESTful API and tested using white-box testing, where the main functions are evaluated for their operation. The
results indicate that the system effectively ensures the authenticity and integrity of documents, preventing document forgery.

Keywords— Hash-Based Authentication Code, Digital Signature, RESTful API, Web Service.

I. INTRODUCTION
Globalization has driven an era of information technology

development, leading to the emergence of criminal activities
[1]. It cannot be denied that certain individuals misuse
technological advancements for personal or group gains,
thereby violating legal regulations. One such criminal activity
in the world of technology is known as Cyber Terrorism.
Cyber Terrorism entails acts of terror against computer
systems, networks, and stored information within computers
[2]. One form of such actions falling under Cyber Terrorism is
Cyber sabotage and extortion. Cyber sabotage and extortion
constitute criminal acts involving disruption, damage, or
destruction of data, computer programs, or internet-connected
network systems [3]. One of the cyber sabotage and extortion
crimes includes electronic document forgery [4].

DOI: 10.24036/int.j.emerg.technol.eng.educ..v1i1.2

Corresponding author: Nur Khairiyah
Universitas Negeri Padang
Email: nkhairiyah018@gmail.com

Received: 05-08-2024
Revised: 13-08-2024
Accepted: 04-10-2024
Published:06-10-2024

 For all articles published in IJETEED.
https://ijeteed.ppj.unp.ac.id/, © copyright is retained by the
authors. This is an open-access article under the CC BY-SA
license

Documents are important assets for agencies, organizations,
states, or individuals, and data loss can pose a risk if not
properly safeguarded. With the advancement of information
technology, document forgery has become easier, making
authentication crucial to maintaining document integrity [5].
One form of effort in protecting document integrity is through
signatures [6].

Digital signature is an authentication system that allows
message senders to add a code as a representation of their
signature [7]. Digital signatures are highly crucial in digital
documents, enhancing operational efficiency and ensuring
compliance with data security regulations [8]. They provide
assurance that documents are authentic and unaltered,
reducing the risks of fraud and legal disputes. Therefore,
digital signatures become a pivotal aspect in digital
transformation and information security.

Document forgery is often carried out by manipulating the
contents to create copies that closely resemble the originals,
thus increasing the need to maintain the confidentiality and
authenticity of documents. In the current technological
development, manual verification becomes less effective as it
requires time and complex procedures.

PT. ARG Technology Solutions, a technology information
company in Padang City, West Sumatra, has been in operation
since 2022 and has been offering internship opportunities to
vocational high school students since 2023. More than 50
students have been accepted into this internship program,
providing them with practical experience and official
certificates as recognition of their participation. Although
Argenesia has strict policies regarding the issuance and
verification of internship certificates, the process of signing
and validating certifications is still carried out manually by the
company's CEO. Therefore, this research selects PT. ARG
Technology Solutions as the case study location.

https://ijeteed.ppj.unp.ac.id/
https://creativecommons.org/licenses/by-sa/4.0/

 8

In this study, a technique is developed to create a digital
signature generation system aimed at providing authentication
for digital certificates to verify the authenticity of certificates
at PT. ARG Solusi Teknolosi. This technique utilizes one of
the cryptographic techniques known as the Hash-Based
Authentication Code Algorithm.

Hash-based Message Authentication Code (HMAC) is a
cryptographic authentication technique that utilizes a hash
function and a secret key [9]. In HMAC, the message or data
to be authenticated is processed using a hash function along
with a secret key known only to the authorized parties [10].
The result of this hash operation is then used to generate an
authentication code called HMAC. This algorithm provides a
higher level of security by offering a robust authentication
mechanism, while leveraging the concept of digital signatures
[11].

By implementing the HMAC algorithm to perform hashing
processes that include data, payload, and document signatures
to be embedded in a QR Code. QR (Quick Response) code is
a type of two-dimensional matrix barcode that stores
information and can be read using a camera [12]. The QR
code consists of black and white squares in a rectangular grid,
storing binary data read by QR code readers .

This digital signature is expected to maintain certificate
authentication and reduce the risk of crimes such as data fraud.
Furthermore, a system will be developed to ensure that the QR
Code can only be read and verified by authorized parties, thus
enhancing document security and integrity more effectively.
The system features key functionalities including generating a
hashed message digest and printing it in QR Code format, as
well as printing documents and document verification. The
system will be built on a web service-based architecture using
RESTful API.

Web services and RESTful APIs enable interaction
between various applications and systems, including in system
implementations [13]. Web services serve as connectors to
generate, hash, and verify QR codes as well as related
documents. RESTful APIs allow applications or users to
communicate [14] with the server for message digest creation,
QR code generation, document printing, and document
verification.
Therefore, this study aims to implement the Hash Based
Authentication Code Algorithm as a digital signature process
on internship certificates at Argenesia to study the signature
generation process and verification and validation processes
based on Quick Response Code. This research will utilize
Spring Boot as the backend framework.

II. RESEARCH METHOD
The design in this study used the Software Development

Life Cycle (SDLC) method with the waterfall process model
[15]. The waterfall method is one of the most straightforward
system development methods [16]. In this chapter, the author
follows the steps of the waterfall method, which consist of
Requirements Gathering and Analysis, Design, Systems
Implementation and Coding, Testing, and Maintenance. The
process in this research is illustrated in the following diagram.

Fig 1. Waterfall Method

The requirements gathering and analysis stage involves

collecting and thoroughly evaluating all the application's
needs. Based on these requirements, the design phase
develops the application's components, workflow, and
operational processes. In this research, Canva and Draw.io
were used for designing.

During the system implementation and coding phase, the
focus shifts to translating the system design into functional
software. This involves developing code according to the
specifications and ensuring seamless integration between
system components. Java, with the Spring Boot framework,
was the programming language chosen for this study.

The testing phase ensures that the system operates
flawlessly and meets the established objectives. White-box
testing, utilizing unit testing with JUnit, was employed to
validate the system's functionality.

III. RESULT AND DISCUSSION

A. Requirements Gathering and Analysis
The research will conduct an analysis of the current

business processes at PT. ARG Solusi Teknologi and assess
the necessary system functionalities to resolve any arising
issues. This analysis is derived from information and data
gathered through interviews and observations with the CEO of
PT. ARG Solusi Teknologi.

Fig 2. Proposed system analyst for signature generating and signature

verification

Fig 3. Proposed system analyst for signature generating and signature
verification

 9

Based on observations and interviews, PT. ARG Solusi
Teknologi signs internship certificates manually and affixes a
stamp as evidence of the certificate's validity and authenticity.

This research proposes the implementation of the Hash-
Based Authentication Code algorithm to provide digital
document authentication for verifying the authenticity of web
service-based certificates. The system includes a digital
signature generator in the form of a QR code and verification
feature to validate the integrity of certificates.

B. Design
After analysis, the research progresses into the design phase

based on the findings from the requirement gathering and
analysis stage [17]. The research employs UML diagrams
(Unified Modeling Language) such as activity diagrams,
sequence diagrams, and class diagrams.

1. Use Case Diagram
The use case diagram illustrates the functionality of

the QR Code generator system and certification
validation using the Hash-Based Authentication Code
algorithm. The administrator is responsible for creating,
sending, and storing certificates in the database, while
relevant institutions or other parties can validate the
letter certificates. Below are the designed use cases
depicted in the diagram.

Fig 4. Use Case Diagram

2. Sequence Diagram
The Sequence Diagram illustrates the interaction

among objects within the system and its environment
through messages along the time axis. Its purpose is to
facilitate and guide system design [18]. The sequence
diagram designed can be viewed in the image below.

Fig 5. Sequence Diagram

3. Class Diagram
A class diagram is a visual representation of the class

structure within a system, displaying the attributes and
methods owned by each class as well as the
relationships between classes. This diagram aids in
modeling and visualizing the static structure of the

system clearly and in detail [19]. The following class
diagram, designed for reference, can be seen in the
image below.

Fig 6. Class Diagram

C. Systems Implementation and Coding
Federal Information Processing Standards (FIPS)

Publication is a series of standards issued by NIST to regulate
various aspects of information processing and computer
security within the US government, including cryptography,
key management, and data protection. Standards for
verification and validation in digital signature algorithms are
outlined in FIPS PUB 186-4. These standards will serve as
references in constructing digital signatures and validating
signatures using hash-based authentication code algorithms.

The implementation of the Hash Based Authentication
Code algorithm as a digital signature in this research begins
with inputting the data to be signed into the database. The data
will be retrieved from the database in the form of objects.
These objects contain an ID, certificate number, certificate
owner's name, competencies, student's origin, internship start
date, internship end date, and certificate issuance date. These
objects will serve as the input value for the hash function. The
function works to produce a message digest from the hashing
result using the hash based authentication code algorithm. The
message digest is generated from the hashing process of data
with a 256-bit private key. The cryptographic hash function
used is SHA-256. Below is the determination of the signature
key and the creation of the Message Authentication Code
(MAC) object with SHA-256, as well as the initialization of
the object for use. The message digest obtained from the
previous hashing process will be inserted into the quick
response code on the certificate. The digital signature and QR
code generated by the system in this study can be viewed in
the following table.

TABLE I
REQUEST AND RESPONSE DATA

Input Data Nama : Nur Khairiyah
Id : ddfe6d7a-67ef-4cba-b63f-2b26b5a326a3
Kompetensi : Programmer
Asal Sekolah : Universitas Negeri Padang
Tanggal mulai : 17 April 2023
Tanggal akhir : 17 Mei 2023
Tanggal sertifikat : 17 Mei 2024

Private Key 6dbf751179df9f302f8956ddc
3a1af50d71ea1fc22fe06d1cc7674a2019e56e9

Message
Diggest

tWDULgnObZd659IZEzW7G6
/pJWLfje2krDDs5cYSWnQ=

QR Code

 10

The Message Digest obtained from the hashing process
using the Hash-Based Authentication Code (HMAC)
algorithm is generated by combining data found in the
database with a secret key initialized in the previous stage.
The following are the steps on how HMAC generates the
Message Digest:

TABLE III
DATA PREPARATION

Message :

“LetterSignatureDTO(id=
f6ad1e2c-ac50-
46e7-93f2-1ee32adb6723, sende
r=Nur Khairiyah, number=
0118/SM/ARG/2023, content=null,
subject=null,
 place=null,
 recipient=null,
city=null, source=null, signatory=null)”

Key : 6dbf751179df9f302f8956ddc
3a1af50d71ea1fc22fe06d1cc7674a2019e56e9

Ipda SHA-
256

x36363636 36363636 36363636 36363636
36363636 36363636 36363636 36363636
36363636 36363636 36363636 36363636
36363636 36363636 36363636 36363636
(x36 diulang 64 kali)

1. If the key length is less than the block size:

The secret key length is 48 bytes, while the block size
for SHA-256 is 64 bytes. Therefore, pad the key with
zeros to make it 64 bytes.
K0 =
6dbf751179df9f302f8956ddc3a1af50d71ea1fc22fe06d
1cc7674a2019e56e90000000000000000000000000000
000000000000000000000000000000000000

2. Perform K0 XOR ipad (0x36 repeated 64 times):
ipad (0x36 repeated 64 times) =
36
36
36

3. Concatenate the result with the message:
(K0 XOR ipad) || message =
5bed43374eefe6421dc26cbf061b9923e12c8bcf14d936
c39c51619e379778d736363636363636363636363636
36363636363636363636363636363636363636 ||
LetterSignatureDTO(id=f6ad1e2c-ac50-46e7-93f2-
1ee32adb6723, sender=Nur Khairiyah,
number=0118/SM/ARG/2023, content=null,
subject=null, place=null, recipient=null, city=null,
source=null, signatory=null)

4. Hash the result with SHA-256:
sha256((K0 XOR ipad) || message) =
6ac27916a047874f1b4722df0e85f15e7c5dc3dbb7b59e
9ad4e5be202ff78984

5. Perform K0 XOR opad (0x5C repeated 64 times):
opad (0x5C repeated 64 times) =
5c5
c5c
5c5c5c5c5c5c5c5c5c5c5c5c5c5c5c5c5c

6. Concatenate the result with the hash from step 4:
(K0 XOR opad) || sha256((K0 XOR ipad) || message) =
313b291d2575bb1803e912817956fb0c8344d3a5ab96a
9dfffc52ca42bfc0ba15c5c5c5c5c5c5c5c5c5c5c5c5c5c
5c5
c5c ||
6ac27916a047874f1b4722df0e85f15e7c5dc3dbb7b59e
9ad4e5be202ff78984

7. Hash the result with SHA-256:
HMAC = sha256((K0 XOR opad) || sha256((K0 XOR
ipad) || message)) =
9ab3ed0dbdbd37b7b9cf67224fd362372c6cfe9b2e230d
6161ad13e9e4f6f3cb

8. Final HMAC for the message with the given secret key:
9ab3ed0dbdbd37b7b9cf67224fd362372c6cfe9b2e230
d6161ad13e9e4f6f3cb

The certificate verification system in this research
necessitates the Quick Response Code decoding process.
Decoding is the process of deciphering the code to extract the
information stored within the QR Code. An interface has been
constructed for facilitating the verification of certificates by
the relevant parties. The initial certificate verification page
functions to input necessary data, such as entering the
certificate number and scanning the QR code.

Fig 7. Input Certificate Number and Scan QR Code Page

Upon successful verification of the certificate, the
application will present various details pertaining to the
certificate, including the Certificate ID stored in the database,
the date of issuance, the certificate number, and the email
address of the recipient. The following is the interface
displayed upon successful verification.

Fig 8. Verfication Certificate Page

Should a certificate be unable to undergo verification due to
an erroneously entered certificate number and if the certificate
remain unverified due to the presence of a counterfeit digital
signature, the interface will be displayed as depicted in the
image below.

 11

Fig 9. Invalid Verfication because signature is false and number certificate is
not found

D. Testing
This study utilizes white-box testing through unit tests to

evaluate the system's programming code. Three specific unit
tests were developed: HmacTest is designed to assess the
functionality of the hash-based message authentication code
algorithm to ensure the program performs as intended;
LoginTest is intended to verify the programming code of the
login feature to confirm it operates correctly; and
VerificationTest aims to examine the program logic for
signature verification to guarantee it works as expected.
1. Hash-Based Authentication Code Algorithms Unit

Testing
This test aims to verify the logic of the login feature's

code. Initially, the setup function prepares the login data,
which includes a random UUID, email, and password.
This data is then passed to the testSignIn function, which
simulates the authentication system's response and checks
its accuracy. Unit testing is conducted to ensure the
verification scenarios are executed correctly. Below is the
scenario layout for the unit tests.

TABLE IIIII
TEST CASE FOR GENERATE MESSAGE DIGGEST

Number 1.1
Purpose Setup Test Environment
Annotation @BeforeEach
Method testGenerateHMAC()
Steps To set up the test environment, create a fake

Certificate object. Mock the behavior of the
getSender method on Certificate to return a fake
User object, and mock the getName method on
User to return the sender's name. Configure the
mock certificateRepository to return the
Certificate object when the findById method is
called with a valid certificate ID. Then, call the
generateHMAC method from qrService with the
certificate ID. Verify that the generated HMAC
is not null.

Results passed
Number 1.2
Purpose Execute Test for generateHMAC with Invalid

Certificate ID
Annotation @Test
Method testGenerateHMACwithInValid()
Steps To test the generateHMAC method with an

invalid certificate ID, create an invalid certificate
ID. Configure the mock certificateRepository to
return Optional.empty() when the findById
method is called with the invalid certificate ID.
Verify that the generateHMAC method from
qrService throws an ApiException, and ensure
the response is not null and the certificate ID
matches the expected value.

Results passed
Number 1.3

Purpose Execute Test for Invalid Signature
Annotation @Test
Method testCheckCertivicationWithInvalidSIgnature()
Steps To test for an invalid signature, create a

CheckRequestDTO object with an invalid
certificate number and signature. Create a
Certificate object with a random ID. Configure
the mock certificateRepository to return the
Certificate object when the findByNumber
method is called. Mock qrService to return a
valid signature when the generateHMAC method
is called. Verify that the checkCertificate method
from certificateService throws an ApiException.

Results passed

2. Verification Certificate’s Unit Testing
The objective of this testing is to validate the code

logic within the certificate verification feature. It entails
preparing certificate data for handling by the setup
function, which in turn provides essential testing objects
like a mocked certificate repository and QR service. The
examination focuses on the code logic of the generate
HMAC feature, facilitated by the preparation of
certificate data managed by the setup function. This data
includes requisite objects for testing, such as a mocked
certificate repository and QR service. Subsequently, it is
utilized across various test scenarios within the
testGenerateHMAC function. This function simulates the
Hash-Based Message Authentication Code (HMAC)
system's response and verifies its conformity with
expectations. Following experimentation, unit testing is
conducted to validate the successful execution of test
scenarios. Presented below is an overview of the created
unit testing scenarios

TABLE IV
TEST CASE FOR VERIFICATIONS

Number 2.1
Purpose Setup Test Environment
Annotation @BeforEach
Method setup()
Steps nitialize mock objects using

MockitoAnnotations.initMocks(this)
Results passed
Number 2.2
Purpose Execute Test for Invalid Signature
Annotation @Test
Method testCheckCertificate_

withSignature_Throws
ApiExecption()

Steps Create a CheckRequestDTO object with an
invalid certificate number and signature.
Create a Certificate object with a random
ID.
Configure the mock certificateRepository to
return the Certificate object when the
findByNumber method is called.
Configure the mock qrService to return a
valid signature when the generateHMAC
method is called.
Verify that the checkCertificate method of
certificateService throws an ApiException

 12

Results passed
Number 2.3
Purpose Data Not Found
Annotation @Test
Method testCheckCertificate_With

NotExitingCertificate_
ThrowsAPiExecption()

Steps Create a CheckRequestDTO object with a
certificate number that does not exist.
Configure the mock certificateRepository to
return Optional.empty() when the
findByNumber method is called.
Verify that the checkCertificate method of
certificateService throws an ApiException.

Result Passed

IV. CONCLUSIONS
The research achieved the successful implementation of the

Hash-Based Authentication Code Algorithm within a digital
signature generator and validator system using Quick
Response Code (QR Code) based web services. This system
features PDF generation and certificate delivery via Gmail.
Certificate verification is conducted through the certificate
number and the decoded result of the QR Code or the
certificate signature. The system generates a message digest
from certificate data stored in the database using the Hash-
Based Authentication Code Algorithm. Database objects are
converted into strings and processed to produce the message
digest, which is then embedded into the QR Code.

White-box testing through unit testing with JUnit
confirmed the success of the system developed with the
Springboot framework. The system includes a generator using
the Hash-Based Authentication Code Algorithm, a login
feature, and a certificate verification feature. All these
components passed the tests successfully, demonstrating that
the system functions effectively and meets the objectives of
the research.

REFERENCES
[1] O. P. Andini, “Cyber Terrorism Criminal Acts in the Perspective of

Transnational Organized Crime: International Criminal Law, Global
Security Studies,” Unnes Law J. J. Huk. Univ. Negeri Semarang,
vol. 7, no. 2, pp. 333–346, 2021.

[2] Z. Jondong, “Kebijakan Hukum Pidana bagi Tindak Pidana Cyber
Terrorism dalam Rangka Pembentukan Hukum Positif di
Indonesia,” J. Prefer. Huk., vol. 1, no. 2, pp. 21–27, 2020, doi:
10.22225/jph.1.2.2337.21-27.

[3] M. Herlina and R. P. Jati, “The Influence of Cybercrime Against
Teenage Angst in Online Media,” vol. 343, no. Icas, pp. 379–382,
2019, doi: 10.2991/icas-19.2019.78.

[4] F. Santiago and E. Satoto, “Obstacles and Solutions in Law
Enforcement Against the Crime of Electronic Data and Information
Falsification,” vol. 5, no. 1, pp. 18–26, 2024.

[5] P. Hade and M. Winoto, “Penggunaan Digital Signature Sebagai
Keamanan Sistem Informasi,” J. Unikom, vol. 1, no. 4, 2022,
[Online]. Available:
https://www.researchgate.net/publication/370098591

[6] B. P. Kavin and S. Ganapathy, “A new digital signature algorithm
for ensuring the data integrity in cloud using elliptic curves,” Int.
Arab J. Inf. Technol., vol. 18, no. 2, pp. 180–190, 2021, doi:
10.34028/IAJIT/18/2/6.

[7] A. Djajadi, K. S. Lestari, L. E. Englista, and A. Destaryana,
“Blockchain-Based E-Certificate Verification and Validation
Automation Architecture to Avoid Counterfeiting of Digital Assets

in Order to Accelerate Digital Transformation,” CCIT J., vol. 16, no.
1, pp. 68–85, 2023, doi: 10.33050/ccit.v16i1.2367.

[8] Y. Genc and E. Afacan, “Design and implementation of an efficient
elliptic curve digital signature algorithm (ECDSA),” 2021 IEEE Int.
IOT, Electron. Mechatronics Conf. IEMTRONICS 2021 - Proc.,
2021, doi: 10.1109/IEMTRONICS52119.2021.9422589.

[9] B. Angkasa, A. Pambudi, T. Informatika, U. M. Sukabumi, H.
Kriptografi, and S. Keamanan, “Implementasi Algoritma Hmac-
Sha-256 Implementation of Hmac-Sha-256 Algorithm,” vol. 20, no.
2, 2023.

[10] M. A. Berlin, S. Muthusundari, C. S. Anita, D. Rajalakshmi, M.
Rajkumar, and R. Dheekshitha, “WITHDRAWN: A HMAC
algorithm based secure online transaction system using block chain
technology,” Mater. Today Proc., no. xxxx, 2020, doi:
10.1016/j.matpr.2020.10.065.

[11] T. D. Prakoso, I. Ernawati, and H. B. Seta, “Penemuan Pola
Asosiasi Pada Data Restoran Menggunakan Algoritma Hash
Based,” Semin. Nas. Mhs. Ilmu Komput. dan Apl., pp. 71–80, 2020.

[12] A. Lorien and T. Wellem, “Implementasi Sistem Otentikasi
Dokumen Berbasis Quick Response (QR) Code dan Digital
Signature,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5,
no. 4, pp. 663–671, 2021, doi: 10.29207/resti.v5i4.3316.

[13] J. Yasmin, Y. Tian, and J. Yang, “A First Look at the Deprecation
of RESTful APIs: An Empirical Study,” Proc. - 2020 IEEE Int.
Conf. Softw. Maint. Evol. ICSME 2020, pp. 151–161, 2020, doi:
10.1109/ICSME46990.2020.00024.

[14] A. Moore, “auto{API} - A Web-Based Tool for Specification of an
API Endpoint to Return JSON Data From an XML Source,” J.
Open Res. Softw., vol. 9, pp. 1–10, 2021, doi: 10.5334/jors.335.

[15] R. A. Purba, “Application design to help predict market demand
using the waterfall method,” Matrix J. Manaj. Teknol. dan Inform.,
vol. 11, no. 3, pp. 140–149, 2021, doi: 10.31940/matrix.v11i3.140-
149.

[16] N. Dwivedi, D. Katiyar, and G. Goel, “A Comparative Study of
Various Software Development Life Cycle (SDLC) Models,” Int. J.
Res. Eng. Sci. Manag., vol. 5, no. 3, pp. 141–144, 2022, [Online].
Available: https://www.ijresm.com

[17] J. Fadillah, Y. Syahidin, E. Gunawan, and J. S. Wijaya, “Design of
Information System for Outpatient Emergency Room Eligibility
Letter to Support BPJS Claim Reporting,” J. Teknol. Inf. dan
Pendidik., vol. 16, no. 1, pp. 139–155, 2023, doi:
10.24036/jtip.v16i1.717.

[18] W. Darwin, Z. Zulfadli, I. Yuliady, J. Jusmardi, and M. Deswina,
“Designing Web-Based Mess and Dormitory Booking
Applications,” J. Teknol. Inf. dan Pendidik., vol. 17, no. 1, pp. 46–
61, 2023, doi: 10.24036/jtip.v17i1.817.

[19] D. Kurniadi, “Designing and Developing of Learning Class
Grouping Applications Base on Genetic Algorithms,” J. Teknol. Inf.
dan Pendidik., vol. 16, no. 1, pp. 109–126, 2023, doi:
10.24036/jtip.v16i1.694.

